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Free oscillations of drops and bubbles: 
the initial-value problem 

By A N D R E A  PROSPERETTI 
Istituto di Fisica, Universittl di Milano, Milano, Italy 

(Received 1 August 1979 and in revised form 12 December 1979) 

We study the initial-value problem posed by the small-amplitude (linearized) free 
oscillations of free drops, gas bubbles, and drops in a host liquid when viscous effects 
cannot be neglected. It is found tha t  the motion consists of modulated damped 
oscillations, with the damping parameter and frequency ampproaching only asymptoti- 
cally the results of the normal-mode analysis. The connexion with the normal-mode 
method is demonstrated explicitly and the experimental relevance of our results is 
discussed. 

1. Introduction 
The small-amplitude oscillatory motion of drops and bubbles about the spherical 

shape is a classical problem in fluid mechanics considered in one form or another 
already by Kelvin ( l890) ,  Lamb 1932, pp. 473, 640 and Rayleigh (1894, art. 
364). A number of other studies have also been devoted to this problem in recent times 
for its importance in chemical engineering (Valentine, Sather & Heideger 1965; 
Miller & Scriven’1968; Loshak & Byers 1973), spray cooling (Yao & Schrock 1976), 
multi-phase flow (Levich 1962; Delichatsios 1975), nuclear physics (Schoessow & 
Baumeister 1966; Wong 1976) and meteorology (Nelson & Gokhale 1972), as well as 
for its intrinsic scientific interest (Chandrasekhar 1959, 1961, p. 466; Reid 1960; 
Prosperetti 1979). 

As with many other problems involving small-amplitude oscillatory flows, all 
existing theoretical investigations have been conducted by separation of the time 
variable, the so-called normal-mode technique (see, for example, Chandrasekhar 
1961, p. 3).  Although perfectly justified on mathematical grounds whenever the 
problem considered possesses a complete set of eigenvalues and eigenfunctions, this 
technique has very strong practical limitations in the solution of initial-value problems 
because of the complexity of the operations required. As a consequence, the transient 
regime of drop oscillations (and of many other systems as well) has never been con- 
sidered, the existing results being limited essentially to the asymptotic values of the 
frequency and damping parameter. It is clear that, in the case of damped free oscilla- 
tions, the value of this information is limited because the asymptotic regime may be 
reached so late that the motion has essentially died out. 

In  the present study we apply to the initial-value problem an alternative technique, 
based on the use of Laplace transforms, which has recently been developed (Prosperetti 
1976; Menikoff et al. 1980; Prosperetti, Cucchiani & Dei Cas 1980; Cortelezzi & 
Prosperetti 1980). The connexion of this technique with the normal-mode result is 
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explicitly established, and it is shown that the eigenvalue characteristic equation can 
be recovered from the complete transient result in a straightforward way. 

The present mathematical approach is related to others used in the past for different 
types of initial-value problems. We may mention the decay of the motion of a floating 
body (Ursell 1964), the transient translational motion of a gas bubble (Chen 1974) and 
of solid bodies (Ockendon 1968) in a viscous liquid, and problems of interfacial stability 
(Bankoff 1961; Sekerka 1967). 

In addition to its relevance for the specific system under consideration, this study 
will demonstrate some general features of the analysis and of the results obtainable 
for small-amplitude oscillatory flows with a free surface. In particular it is found that 
the motion consists of modulated oscillations, with varying frequency and damping 
parameter. The essential physical process responsible for this behaviour is the diffu- 
sion of vorticity from the boundaries into the bulk of the fluid(s), which leads to an 
integro-differential structure for the equation of motion of the amplitude of the 
oscillations. 

The present study is based on results obtained in Prosperetti (1977) for a more 
general class of flows than those considered here. The reader is referred to that study 
for details of the solution of the fluid-mechanical problem. Here we shall confine our 
attention to the equation of motion for the oscillation amplitude. The two limiting 
cases in which one of the fluids has negligible dynamical effects (i.e. the free drop and 
the gas bubble) are considered separately. The last section contains some general 
remarks on the results and their relevance for the interpretation of experimental data. 

2. The equation of motion of the free surface 
The initial-value problem posed by the small-amplitude shape oscillations of a fluid 

droplet immersed in another unbounded fluid has been considered by Prosperetti 
(1977). In that work the interface separating the two fluids was assumed to have the 
form 

where R is the average equilibrium radius, Y r  is a spherical harmonic, and ( r ,  8,$) 
are spherical co-ordinates centred at the centroid of the interface.t A solution of the 
linearized form of the Navier-Stokes equations was then sought, subject to the kine- 
matic boundary condition stemming from (l), and to the dynamical boundary con- 
ditions on the tangential and the normal stresses Itt the interface. The special cases in 
which one of the fluids has negligible dynamical effects were considered in some detail. 
It was shown that in either case the amplitude a,(t) satisfies the following integro- 
differential equation 

do, 4) = R+a,(t) yxo, 4), (1) 

where dots denote differentiation with respect to time. For the case of a bubble (i.e. 
when the effects of the inner fluid are negligible) the function &,(t) is defined by its 
Laplace transform Q,(p), 

= - [If tZ4d1-1, (3) 
t The superscript m is omitted from the amplitude a,(t) because it is found that, in the 

linearized approximation, the equation determining this quantity depends on the order, but not 
on the degree, of the spherical harmonic. 
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where q = R(p/v)* and 2 , ~  is a quotient of modified Bessel functions of the second 
kind, 

(see Onoe 1958). The other quantities appearing in (2) are specified as follows in terms 
of the liquid density p,  kinematic viscosity v = p/p, and surface tension 5, 

X a ( q )  = qKnG(q)/Kn+(q)  ) ( 4 )  

b,, = (n + 2) ( 2 n  + 1) v/R2,  

&, = (n- 1) (n+ 1) ( n + 2 ) 5 / p ~ ~ ,  

/3, = n(n+ 2 ) / ( 2 n +  1). 

( 5 a )  

( 5 b )  

When it is the outer fluid to have negligible effects as would be the case for instance, 
for a free liquid droplet, one has in place of (3 ) - (5 )  

b,, = (n - 1) (2n + 1) v/R2, WE, = n(n - 1) (n + 2 )  5/pR3, (6% b )  

4 + + ( q )  = qLG(q) / In++(q)  (8) 

where the I’s are modified Bessel functions of the first kind. 
Equation ( 2 )  is valid when the initial vorticity vanishes everywhere. In the more 

general case the right-hand side of this equation would acquire a forcing term depend- 
ent on the initial vorticity distribution. 

It was shown in Prosperetti (1977)  that the integral term in (2) is negligible as 
t + 0, so that initially the motion is just that executed by a damped harmonic oscillator 
of natural frequency wno and damping parameter brio. The expressions for these 
quantities given in ( 5 )  and (6) agree with the well-known results obtained from the 
irrotational approximation (see, for example, Lamb 1932, pp. 473, 639) .  

The more general case in which the dynamical effects of both fluids must be con- 
sidered was also analysed in Prosperetti (1977) )  and although an equation corre- 
sponding to ( 2 )  was not explicitly given, it is quite readily derived following the same 
procedure and imposing the additional requirement of continuity of the tangential 
velocities. The result is 

( 9 )  

(10) 

( 1 1 )  

u, + r;l D,(t - 7) &(7) d7 + W& a, = 0, 

r, = npo+ (n+ 1)pi ,  

I&, = (n - 1) n(n+ 1) (n  + 2 )  C/r, R3, 

rw+ 1 ) P i 4 + +  (9) + 2n(n  + 2 )  (ru0-Pi)l 

1: 
where 

( 1 2 )  
I ( x [ ( ~ n + 1 ) ~ o . X n ~ ( q o ) - 2 ( n - l ) ( n + 1 ) ( P o - P i ) l  

= 
P O X - - +  ( ~ 0 )  +pi<++ ( P i )  + 2 ( ~ o - ~ i )  > 

with qi, = R(p/vi, o)l. In these equations quantities pertaining to the inner and outer 
fluids carry the subscripts i and o respectively. Notice that it is not possible to extract 
from the integral in ( 9 )  a constant which represents the initial damping as was done in 
(2) for the case of a single fluid. This feature derives from the much stronger aource of 
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vorticity a t  the free surface which is introduced by the no-slip condition applicable 
to  the two-fluid case (see, for example, Prosperetti et al. 1980). 

An analytical solution of (2) or (9) in the time domain appears to be beyond reach. 
The solution for the Laplace-transformed function &(p) however is quite readily 
obtained as 

(13) 
hn(O)P-4nan(O) 

P 
for equation (2) and as 

for equation (9). The inversion of these transforms will be accomplished numerically. 
(Here ci,(O) = da,(O)/dt.) 

The results of ( 1  3) and (14) refer to  initial conditions for which the vorticity distri- 
bution in the liquid(s) vanishes. In  the case of a non-zero initial vorticity the transform 
of the added non-homogeneous term in the right-hand side of (2)  and (9) would appear 
in the numerator of the fractions in (13) and (14). 

3. Asymptotic behaviour and the connexion with the normal-mode analysis 
One may ask whether for large times equations (2) or (9) possess solutions behaving 

as exp ( -  amt), with a, a complex constant. The answer may be obtained quite 
readily from a consideration of the transformed solutions (13) and (14) because, if 
a,(t) = exp ( - a, t)  v,(t) with v,(t) --f constant for t - t  co, known properties of the 
Laplace transform imply that 

limpv",(p) = limpa",(p - a,) = constant, 
P 4 P - 4  

(Widder 1941, cha. 5; see also Prosperetti 1976) whichisonly possible if the denomina- 
tors in (13) and (14) vanish when ( -  a,) is substituted for p .  For the case of a free 
droplet we obtain in this way 

a: - 2b,o a, + &o - 2/9, b,, a, [ 1 - it&,+$ (x)]-' = 0, (16a) 

where x = R(a,/v)* and $,+$(x) = xJ,++(x)/J,+$(x). Equation (16a)  coincides with 
the characteristic equation obtained by Chandrasekhar (1959, 1961, p. 466) and Reid 
(1960) by means of the normal-mode analysis. 

The same argument applied to  the bubble case gives the following equation 

- 2b,, a m  + + 2/3, brio  am[^+ 42,-+(~)1-'  = 0 9  (16b) 

where sn-+.(x) = xH,+g(x)/H,.+(x), and the H's  are Hankel functions of the first 
or second kind.? On the basis of the known properties of these functions (see, for 
example, Erdelyi et al. 1953, p. 78) i t  is straightforward to conclude that ( l6b)  may be 
written as the quotient of two polynomials, so that there is only a finite number of 
am's obtainable in this way. However, it is easy to prove that a continuous spectruni 
exists consisting of the entire positive real semi-axis of the a plane (Prosperetti 1980). 

t The first kind functions give rise to the normal modes such that Im um > 0, the second 
kind ones to those with Im urn < 0 (see Prosperetti 1980). 



Free oscillations of drops and  bubbles 337 

Mathematically, the existence of this continuous spectrum is associated with the fact 
that for the bubble case the complex plane on which the function ( 1 3 )  is defined must 
be cut along the real negative semi-axis to avoid ambiguities in the definition of the 
function 2n+(q).  This procedure is necessary also in the two-liquid case, but not in the 
free drop one because Yn+%( - q )  = Yn+%(q). Our result for the discrete spectrum, 
( 1 6 b ) ,  may be proved to coincide with the characteristic equation given, in a some- 
what more complicated form, by Miller & Xcriven (1968). These authors however 
disregarded entirely the continuous spectrum. 

Similar results are found for the two fluid case. From equations (1 2) and ( 1  4) we 
derive the following characteristic equation 

+ wko) rn[po  *gn-i(xo) +pi Yn+g(Xi) + 2(/~o -pi)] 

- a,[(2n+ i)pi,J?n+%(xi) + 2n(n+ 2) (po-pi)] 

x [(zn+ l ) / ~ o 2 ~ - 3 ( ~ 0 ) - 2 ( n - l )  ( n +  1) (po-pi)] = 0, (17 )  

where = R(a,/vi,,)*. Equations ( 1 6 a , b )  are contained as limiting cases in this 
result. 

The connexion with the normal-mode approach can be made more rigorous and 
formally more satisfactory with the aid of the inversion theorem for the Laplace 
transform and of the calculus of residues. In this way one would find an expression of 
the form 

A 

a,(t) = CckeXp(-ff,,kt)+{ - m  P ( x ) e z t d x ,  
k 

which has the structure of the summation over the discrete and the continuous spec- 
trum to which the normal-mode analysis would in principle lead. From this point of 
view equation (15) is just the condition to ensure that a,, k be a pole for &(p) ,  and the 
constants ck are found to  be given by 

where A,@) is the denominator in (13) or (14). (In a normal-mode frame%ork the 
constants ck should be computed by means of scalar products in a suitable Hilbert 
space.) For cases of non-zero initial vorticity only the numerator of the fraction in (18) 
would be altered. 

In  the next section we shall consider the two one-liquid cases. The general case will 
be resumed in the following section. 

4. Shape oscillations of free drops and of gas bubbles 
We may summarize the preceding results for the two one-liquid cases (i,e. the 

bubble and the free drop) by saying that the system behaves as a damped oscillator 
characterized initially by the natural frequency ( w i o  - baa)* and the damping par- 
ameter brio, and asymptotically by the natural frequency Im V~ and the damping 
parameter Re a,. Here am is one of the normal modes given by (1 6) ,  which in general 
will be the one with the smallest real part: we shall refer to  this mode as to the first 
normal mode and from now on the symbol am will be used to denote it. It is of interest 
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0 0.5 1 E 

FIGURE 1. Dimensionless asymptotic (-, equations (16a, b ) )  and initial irrotational (---, 
equations ( 5 b )  and (66)) oscillation frequency as a function of the dimensionless viscosity for 
free drops and gas bubbles for 12 = 2. 

to compare these quantities, because the greater their difference, the more the dynami- 
cal behaviour of the system differs from that of a simple oscillator. For convenience we 
introduce the following non-dimensional quantities 

B,, = (R3p/CPb,,, Q,, = (B3~/C)4(&, - b2,0)4 (19) 

B,, = (B3p/C)6 Re gm, Qnm = (B3p/3)61m cm. (20) 

Equations (5a )  and (6a)  give then respectively 

B,, = (n + 2) (2% + 1) E (bubble), (21a) 

B,, = (n- 1) (2n+ 1 ) ~  (drop), ( 2 1 b )  

E = v(p/BC)k (22) 

where the parameter E ,  which may be considered a dimensionless viscosity, is given by 

The proof that (B,,, Qnm) --f (B,,, Q,,) as E +  0 has been given by Chandrasekhar 
(1959, 1961) and Reid (1960) for the drop case and by Miller & Scriven (1968) for the 
bubble case, and will not be repeated here. We give graphs of the quantities defined in 
(19) and (20) as functions of the parameter E in figures 1 and 2 for n = 2; further results 
of this type will be found in Prosperetti (1980). 

Figure 1 shows the behaviour of Qzo and of QZ,. It is observed that the initial and 
the asymptotic frequencies in the drop case vanish for E = 2J2/5 E 0.5657 and 
E N 0.7665 respectively. This behaviour corresponds to the transition from periodic 
t o  aperiodic decay of the oscillations. It is interesting to notice that this transition 
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FIGURE 2. Dimensionless asymptotic (-, equations (16a, b ) )  and initial irrotational (---, 
equations (5a )  and ( 6 a ) )  damping parameter as a function of the dimensionless viscosity for free 
drops and gas bubbles for n = 2. 
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FIGURE 3. Oscillation amplitude of a free drop for n = 2, E = 0.6, a,(O) = 1, (i2(0) = 0, obtained 
from the numerical inversion of the result (13) (-) compared with the least-damped normal 
mode (---) and the initial, irrotational approximation (-. - * -). 

occurs much earlier for SZ,, than for QZm. Thus in a certain range of values of 8 i t  is 
possible for the motion to start out as an aperiodic relaxation and to evolve into periodic 
oscillations as vorticity smooths out the large velocity gradients associated with the 
initial irrotational flow. An example of this behaviour is shown in figure 3. For the 
bubble case the transition to aperiodic motion occurs fore = 43/10 N 0-1732 for Q,,, 
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FIGURE 4. Oscillation amplitude of a free drop for n = 2, B = 0.1, a,(O) = I ,  d,(O) = 0 obtained 
from the numerical inversion of the complete result (13) (-) compared with the least-damped 
normal mode (----) and the initial, irrotational approximation (- - - . -). 

but only for e+ 00 for Q2m. Thus, no matter how large the viscosity, the bubble motion 
will always have an oscillatory ' tail ', except in the limit e + CQ. The physical reason for 
this difference between the drop and bubble cases is that in an unbounded domain the 
velocity gradients can become arbitrarily small. 

Figure 2 shows B,, and B,, as functions of 6 .  The curves for the drop case exhibit a 
bifurcation point for those values of 6 at which a,, and Q2m disappear. Beyond this 
point the normal modes become purely real, the lower one corresponding to the 
' creeping motion ' of a strongly overdamped oscillator (Chandrasekhar 1961). In  the 
bubble case the transition to non-oscillatory behaviour is exhibited only by B,,. In  
place of the sharp maximum that the other curves exhibit a t  the bifurcation point, 
B,, exhibits a much milder maximum after which it starts slowly to decrease. As 
could be anticipated, in all cases the maxima occur approximately for values of 6 such 
that the diffusion length in the course of one oscillation, which is of the order of ( v/w2,,)*, 
equals the characteristic length R. 

Figures 3 to 5 show the results obtained by the numerical inversion of the Laplace 
transforms (13) for the drop and bubble cases (continuous lines). The numerical 
method of Durbin (1974) has been used, which has been found sufficiently stable for 
the time intervals considered. In  all the examples presented in this and in the following 
section the comparison with the normal mode results (dashed lines) has been made 
choosing as initial condition for the latter the value given by ( I  8). Clearly this particu- 
lar choice has the effect of making the difference with the complete solution vanishingly 
small for t+00, but introduces a discrepancy in the initial stages. Conversely, if 
agreement with the exact solution were imposed for t -+ 0, a difference would appear 
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FIGURE 5. Oscillation amplitude of a gas bubble for m = 2, E = 0-5, a,(O) = 1, ci , (O) = 0 obtained 
from the numerical inversion of the complete result (13) (-) compared with the least-damped 
normal mode (----) and the initial, irrotational approximation (- - -- -). 

for large times (see Prosperetti 1976 for some examples). In figures 3 to 5 we also show 
using dash-and-dot-lines the results obtained by means of the irrotational approxi- 
mation (Lamb 1932, p. 640). As is clear from the preceding discussion this approxima- 
tion is uniformly valid in time for small E ,  but is valid initially for any E .  The figures 
are in terms of a dimensionless time r defined by 

7 = (C/@3)+t ,  

and the initial conditions a,(O) = 1, d,(O) = 0 have been used. 
Figure 3 refers to the drop case for n = 2 and c = 0.6. This value of c is greater than 

the critical one as far as the initial motion is concerned, but  smaller than the critical 
one for (BZm, QSm). The appearance of oscillations for sufficiently large times can be 
discerned in the figure. Figures 4 and 5 are for the bubble case for E = 0.1 and c = 0.5 
respectively. The first value is smaller than the critical one, while the other one is 
much larger. It is seen that the differences between the three sets of curves are much 
more pronounced in the bubble than in the drop cases. Again, this feature is a conse- 
quence of the unboundedness of the domain in the former case. 
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0.5 1 0 
E i  

FIQURE 6. Dimensionless asymptotic oscillation frequency of a liquid droplet of dimensionless 
viscosity E ,  in a liquid of dimensionless viscosity E ,  for n = 2 (from (17)). Both liquids have the 
same density. The dashed line is the irrotational inviscid result (11). 

5. Liquid drop in a viscous liquid 
We now turn to the more general case in which both fluids have non-negligible 

dynamical effects as would happen for a liquid droplet immersed in another immis- 
cible liquid. In  view of the fact that our results apply only to the case of no relative 
motion between the droplet and the host liquid (which is known to influence the 
process, see Subramanyam 1969) we shall consider here only the neutrally buoyant 
case pi = po. The case of unequal densities could be of greater interest in a micro- 
gravity environment such as that provided by Spacelab, but the general features of the 
motion would be very similar to those illustrated here. Normal-mode results for 
unequal densities can be found in Prosperetti (1980). 

Figures 6 and 7 are plots of Qzm and B2*, as determined from (17))  as functions of 

ei = vi(pi/X)J, €0 = vo(po/RC)*. 

The non-dimensionalization of B and Q has been made as in (20) on the basis of the 
physical properties of the inner fluid. The dashed line in figure 6 corresponds to the 
inviscid result (1 1). It is clear that this value is a very poor approximation except for 
extremely small values of ei and eo. The strong effect of the continuity of the tangential 
velocity is very clearly illustrated by the sharp dependence on ei for small values of this 
quantity that the curves for i2 and B exhibit in correspondence of e, = 0.01, 0.1, and 
0.2. 

Figures 8 and 9 show two examples of the amplitude a2 as a function of the dimen- 
sionless time 7 = (</pi R3)4t for ei = 0.1, eo = 0.5 and for ei = 0.5, eo = 0.1 respectively. 
The dashed lines are the asymptotic solutions with the initial condition chosen as 
before so as to ensure agreement for t -+ 00. Although no explicit form of an initially 
valid solution in the sense of the previous section can be given here, it is dear from the 
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FIGURE 7. Dimensionless asymptotic damping parameter of a liquid droplet of dimensionless 
viscosity 6, in a liquid of dimensionless viscosity B, for n = 2 (from (17)). Both liquids have the 
same density. 

1 

a2 

0.5 

0 

\ 
\ 
\ 
\ 
\ 
\ 

0 2 4 

FIGURE 8. Oscillation amplitude of a viscous liquid drop in a viscous liquid of equal density for 
n = 2 ,  E, = 0.1, B, = 0.5, az(0) = 1, ci,(O) = 0 obtained from the numerical inversion of the 
complete result (14) (--) compared with the least-damped normal mode (----). 

7 
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FIGURE 9. Oscillation amplitude of a viscous liquid drop in a viscous liquid of equal density for 
n = 2, E ,  = 0.5, 6, = 0.1, a,(O) = 1, d,(O) = 0 obtained from the numerical inversion of the 
complete result (14) (---) compared with the least-damped normal mode (----). 
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FIGUEE 10. Oscillation amplitude of a viscous liquid drop in a viscous liquid of equal density for 
n = 2, E,  = B, = 0.5, a,(O) = 1 ,  ci,(0) = 0 obtained from the numerical inversion of the complet,e 
result (14) (-) compared with the least-damped normal mode (----). 

7 
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fact that daldr does not vanish in r = 0 for the asymptotic solution that again we have 
a difference between the ‘initial’ and asymptotic frequency. A similar remark applies 
also to our last example, shown in figure 10, relative to a strongly damped case, 
€i = €0  = 0.5.  

6 .  Conclusions 
In  this study we have shown that the free oscillations of droplets and bubbles about 

the spherical shape cannot be represented in terms of a single value of the frequency 
and of the damping parameter. Rather, a representation in terms of modulated 
oscillations of the form 

a,(t) cc exp [ - b(t)  k i w ( t ) ]  t ,  (23) 

would appear to represent more closely the process, both mathematically and physi- 
cally. The asymptotic values of (L) and b for t -+ 03 are those given by the normal-mode 
analysis. Explicit expressions of these quantities for t -+ 0 are available only for the 
two cases in which only one fluid has significant dynamical effects (i.e. the free drop 
and the gas bubble). The question of determining explicitly the time dependence of b 
and o is a very interesting one, which however must be left open a t  this time in view 
of the complicated structure of the exact results (13) and (14). Some modified version 
of the two-timing technique might perhaps lead to approximate expressions when the 
parameter E is small. 

From a practical viewpoint the time dependence of b and o has the obvious conse- 
quence that if an attempt is made to interpret experimental data in terms of a single 
value for these quantities, differences would be observed between one oscillation and 
the following one. Procedures such as averaging of these data would then lead to 
incorrect results. This remark is important in view of the fact that observation of the 
free oscillations of drops and bubbles has been proposed as a means to infer the rheo- 
logical properties of fluid-fluid interfaces (Miller & Scriven 1968; Ramabhadran, 
Byers & Friedly 1976). In  view of our results it would appear that measurements on 
forced oscillations such as those reported by Marston & Apfel (1979) would be more 
suitable because in that case the response of the system contains essentially only the 
least damped normal mode. 

In conclusion a comment is in order on the validity of the linearized approximation 
on the basis of which the above results have been derived. A straightforward estimate 
of the order of magnitude of the convective term in the momentum equation shows 
that it will be negligible compared with &/at provided that (a,(t)( + R, as was to  be 
expected. When this condition is satisfied second-order effects, such as microstreaming 
(see, for example, Riley 1967) are negligible. More interesting is perhaps the question of 
how the ‘memory’ effect exhibited by the motion under consideration would be 
altered by convective momentum transport. Since surface particles are forced to 
remain on the interface by the kinematic boundary condition, the transport of vorticity 
into the body of the fluids is also in the non-linear case strongly influenced by diffu- 
sion, which is the process responsible for the integro-differential structure of equa- 
tions (2)  and (9).  However, the inclusion of non-linear terms would certainly change the 
vorticity source a t  the interface and its distribution in the fluids, so as to affect the 
‘modulation’ of the quantities b(t)  and o(t) appearing in (23). 
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